Math 54 - Solutions to graded problems in Homework 4

Peyam Tabrizian

Friday, September 30th, 2011

3.1.9

$\begin{vmatrix} 6 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 2 & 0 & 0 & 0 \\ 8 & 3 & 1 & 8 \end{vmatrix} = 2 \begin{vmatrix} 0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 8 \end{vmatrix} = 2 \times 5 \times \begin{vmatrix} 7 & 2 \\ 3 & 1 \end{vmatrix} = 2 \times 5 \times (7)$	(-6) = 10
---	-----------

Where we expanded along the third row and the first row respectively.

4.2.13

$$W = \left\{ \begin{bmatrix} c \\ 0 \\ c \end{bmatrix} + \begin{bmatrix} -6d \\ d \\ 0 \end{bmatrix} \right\} = \left\{ c \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + d \begin{bmatrix} -6 \\ 1 \\ 0 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -6 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Since the Span of any set of vectors is a vector space (Theorem 1), W is a vector space.

<u>Alternatively</u>: Notice that W = Col(A), where $A = \begin{bmatrix} 1 & -6 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$. Since Col(A) is a vector space (Theorem 3), W is a vector space.

4.3.33

Suppose $a\mathbf{p_1} + b\mathbf{p_2} = \mathbf{0}$, then:

$$a(1 + t2) + b(1 - t2) = 0$$

$$a + at2 + b - bt2 = 0$$

$$(a - b)t2 + (a + b) = 0$$

However, a polynomial equals to 0 if and only if its coefficients equal to 0. Hence we get a - b = 0 and a + b = 0, which implies a = b = 0. Hence $\mathbf{p_1}$ and $\mathbf{p_2}$ are linearly independent.

Alternative method:

 $\mathbf{p_1}$ and $\mathbf{p_2}$ are linearly independent because $\mathbf{p_1}$ is not a multiple of $\mathbf{p_2}$ (and neither of them is the zero-polynomial).

WARNING: This trick only works if you have two polynomials!

Awesome Peyam method:

Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be a basis for \mathbb{P}_3 . Then $\mathbf{p_1}$ and $\mathbf{p_2}$ have coordinates $\begin{bmatrix} 1\\0\\1\\0\end{bmatrix}$ and $\begin{bmatrix} 1\\0\\-1\\0\\ \end{bmatrix}$ respectively. Since those two vectors are linearly independent in \mathbb{R}^4 , $\mathbf{p_1}$ and $\mathbf{p_2}$

are linearly independent in \mathbb{P}_3 . Oh the joy of coordinates!