Math 54 - Solutions to graded problems in Homework 4

Peyam Tabrizian

Friday, September 30th, 2011

3.1.9

$\left|\begin{array}{cccc}6 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 2 & 0 & 0 & 0 \\ 8 & 3 & 1 & 8\end{array}\right|=2\left|\begin{array}{ccc}0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 8\end{array}\right|=2 \times 5 \times\left|\begin{array}{cc}7 & 2 \\ 3 & 1\end{array}\right|=2 \times 5 \times(7-6)=10$
Where we expanded along the third row and the first row respectively.

4.2.13

$$
W=\left\{\left[\begin{array}{l}
c \\
0 \\
c
\end{array}\right]+\left[\begin{array}{c}
-6 d \\
d \\
0
\end{array}\right]\right\}=\left\{c\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+d\left[\begin{array}{c}
-6 \\
1 \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
1 \\
0
\end{array}\right]\right\}
$$

Since the Span of any set of vectors is a vector space (Theorem 1), W is a vector space.

Alternatively: Notice that $W=\operatorname{Col}(A)$, where $A=\left[\begin{array}{cc}1 & -6 \\ 0 & 1 \\ 1 & 0\end{array}\right]$. Since $\operatorname{Col}(A)$ is a vector space (Theorem 3), W is a vector space.

4.3.33

Suppose $a \mathbf{p}_{\mathbf{1}}+b \mathbf{p}_{\mathbf{2}}=\mathbf{0}$, then:

$$
\begin{aligned}
a\left(1+t^{2}\right)+b\left(1-t^{2}\right) & =0 \\
a+a t^{2}+b-b t^{2} & =0 \\
(a-b) t^{2}+(a+b) & =0
\end{aligned}
$$

However, a polynomial equals to 0 if and only if its coefficients equal to 0 . Hence we get $a-b=0$ and $a+b=0$, which implies $a=b=0$. Hence $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$ are linearly independent.

Alternative method:
$\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$ are linearly independent because $\mathbf{p}_{\mathbf{1}}$ is not a multiple of $\mathbf{p}_{\mathbf{2}}$ (and neither of them is the zero-polynomial).
WARNING: This trick only works if you have two polynomials!
Awesome Peyam method:
Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be a basis for \mathbb{P}_{3}. Then $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$ have coordinates $\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and
$\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]$ respectively. Since those two vectors are linearly independent in $\mathbb{R}^{4}, \mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$
are linearly independent in \mathbb{P}_{3}. Oh the joy of coordinates!

